Neural Architecture Search with Random Labels
arXiv (Cornell University)(2021)
摘要
In this paper, we investigate a new variant of neural architecture search (NAS) paradigm -- searching with random labels (RLNAS). The task sounds counter-intuitive for most existing NAS algorithms since random label provides few information on the performance of each candidate architecture. Instead, we propose a novel NAS framework based on ease-of-convergence hypothesis, which requires only random labels during searching. The algorithm involves two steps: first, we train a SuperNet using random labels; second, from the SuperNet we extract the sub-network whose weights change most significantly during the training. Extensive experiments are evaluated on multiple datasets (e.g. NAS-Bench-201 and ImageNet) and multiple search spaces (e.g. DARTS-like and MobileNet-like). Very surprisingly, RLNAS achieves comparable or even better results compared with state-of-the-art NAS methods such as PC-DARTS, Single Path One-Shot, even though the counterparts utilize full ground truth labels for searching. We hope our finding could inspire new understandings on the essential of NAS.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn