Metabolic Adaptation of Fungal Strains in Response to Contamination by Polychlorinated Biphenyls
Environmental Science and Pollution Research(2019)
摘要
Polychlorinated biphenyls (PCBs) represent a large group of recalcitrant environmental pollutants. Up to now, many studies have focused on bioremediation of PCBs by fungal strains; however, the mechanisms of adaptation of these strains towards PCBs remain unknown despite their importance in developing effective bioremediation processes. We studied five species, each consisting of two strains isolated either from PCB-polluted or PCB-unpolluted substrates (control strains). We investigated their responses to PCB contamination by studying their tolerance to PCBs, their ability to reduce these pollutants, and their expression level of Laccase genes. In Thermothelomyces thermophila, Thermothelomyces heterothallica, Thermoascus crustaceus, and Fusarium solani, all the studied strains showed a similar tolerance and PCB degradation regardless of their origin. In Schizophyllum commune, while both strains showed similar resistance to PCBs, i.e., PCBs and their degradation products presented no toxicity for these strains, the rate of PCB degradation of the strain from a PCB-polluted environment was significantly slightly higher. The PCB degradation did not correlate with the expression level of genes encoding Laccases. These results demonstrate that the tolerance and PCB degradation by the fungal strains, which did not involve Laccase genes, required different adaptation systems which seem to be constitutive or rapidly inducible by PCB according to the fungal species.
更多查看译文
关键词
Adaptation,Fungal species,PCBs,Tolerance,Biodegradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn