Large-Scale Retrieval for Reinforcement Learning
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022)(2022)
摘要
Effective decision making involves flexibly relating past experiences and relevant contextual information to a novel situation. In deep reinforcement learning (RL), the dominant paradigm is for an agent to amortise information that helps decision making into its network weights via gradient descent on training losses. Here, we pursue an alternative approach in which agents can utilise large-scale context sensitive database lookups to support their parametric computations. This allows agents to directly learn in an end-to-end manner to utilise relevant information to inform their outputs. In addition, new information can be attended to by the agent, without retraining, by simply augmenting the retrieval dataset. We study this approach for offline RL in 9x9 Go, a challenging game for which the vast combinatorial state space privileges generalisation over direct matching to past experiences. We leverage fast, approximate nearest neighbor techniques in order to retrieve relevant data from a set of tens of millions of expert demonstration states. Attending to this information provides a significant boost to prediction accuracy and game-play performance over simply using these demonstrations as training trajectories, providing a compelling demonstration of the value of large-scale retrieval in offline RL agents.
更多查看译文
关键词
Reinforcement Learning,Deep Learning,Real-Time Strategy Games,General Game Playing,Behavior Trees
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn