Physics-Informed Deep Learning-Based Real-Time Structural Response Prediction Method
ENGINEERING(2024)
摘要
High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures, including post-earthquake damage assessment, structural health monitoring, and seismic resilience assessment of buildings. To improve the accuracy and efficiency of structural response prediction, this study proposes a novel physics-informed deep-learning-based real-time structural response prediction method that can predict a large number of nodes in a structure through a data-driven training method and an autoregressive training strategy. The proposed method includes a Phy-Seisformer model that incorporates the physical information of the structure into the model, thereby enabling higher-precision predictions. Experiments were conducted on a four-story masonry structure, an eleven-story reinforced concrete irregular structure, and a twenty-one-story reinforced concrete frame structure to verify the accuracy and efficiency of the proposed method. In addition, the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study. Furthermore, by conducting a comparative experiment, the impact of the range of seismic wave amplitudes on the prediction accuracy was studied. The experimental results show that the method proposed in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite element calculations for different types of building structures.
更多查看译文
关键词
Structural seismic response prediction,Physics information informed,Real-time prediction,Earthquake engineering,Data-driven machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn