An Effective Farmer-Centred Mobile Intelligence Solution Using Lightweight Deep Learning for Integrated Wheat Pest Management

J Ind Inf Integr(2024)

引用 0|浏览0
摘要
Integrated Pest Management (IPM) techniques have been widely used in agriculture to manage pest damage in the most economical way and to minimise harm to people, property and the environment. However, current research and products on the market cannot consolidate this process. Most existing solutions either require experts to visually identify pests or cannot automatically assess pest levels and make decisions based on detection results. To make the process from pest identification to pest management decision making more automated and intelligent, we propose an end-to-end integrated pest management solution that uses deep learning for semi-automated pest detection and an expert system for pest management decision making. Specifically, a low computational cost sampling point generation algorithm is proposed to enable mobile devices to generate uniformly distributed sampling points in irregularly shaped fields. We build a pest detection model based on YoloX and use Pytorch Mobile to deploy it on mobile phones, allowing users to detect pests offline. We develop a standardised sampling specification and a mobile application to guide users to take photos that allow pest population density to be calculated. A rule-based expert system is established to derive pest management thresholds from prior agricultural knowledge and make decisions based on pest detection results. We also propose a human-in-the-loop algorithm to continuously track and update the validity of the thresholds in the expert system. The mean average precision of the pest detection model is 58.17% for 97 classes, 75.29% for 2 classes, and 57.33% for 11 classes on three pest datasets, respectively. The usability of the pest management system is assessed by the User Experience Surveys and achieves a System Usability Scale (SUS) score of 76. The usability of the proposed solution is validated by qualitative field experiments.
更多
查看译文
关键词
Integrated pest management,Deep learning,Expert system,Smart agriculture,Tiny object detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn