Surface Chemistry Induced Robust SEI on Graphite Surface Via Soft Carbon Coating Enables Fast Lithium Storage

CARBON(2024)

引用 0|浏览21
摘要
The realization of fast-charging lithium-ion batteries with long cycle life using graphite anode is typically hindered by the uncontrollable lithium plating on graphite surface. Herein we have systematically investigated the effects of soft carbon coating on SEI properties and Li+ storage capability. A variety of analytical studies combined with three-electrode impedance measurement and interface analysis demonstrate that the carbon coating effectively mitigates the formation of resistive films on the graphite surface, leading to facilitated charge transfer and low energy barrier. The depth-profiling XPS analysis clearly shows that the formation of a uniform, robust and LiF-rich SEI plays a dominant role in enhancing the interfacial kinetics, whereas the Li+ diffusion in bulk electrode is merely affected. As a result, the graphite anode with carbon coating exhibits enhanced fast-charging performance and cycle life, including a capacity retention ratio of 98.3 % after 100 cycles at 2C-CV. In general, this work reveals the critical role of coating layer chemistry in regulating the SEI properties and Li+ storage performance, which provides a valuable guidance for the rational design of practical graphite anode for fast-charging.
更多
查看译文
关键词
Graphite anodes,Fast charging,Carbon coating,Electrode-electrolyte interphases,Lithium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn