ARGO 2.0: a Hybrid NLP/ML Framework for Diagnosis Standardization*
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC(2023)
摘要
A relevant problem in medicine is the standardization of the diagnosis associated with a clinical case. Although diagnosis formulation is an intrinsically subjective and uncertain process, its standardization may take benefit from digital solutions automating the routines at the basis of such a decision. In this work, we propose ARGO 2.0: a framework for the development of decision support systems for diagnosis formulation. The framework can read free-text reports and store their clinically relevant information as personalized electronic Case Report Forms. A hybrid strategy, exploiting the synergy of Natural Language Processing and Machine Learning techniques, is used to automatically suggest a diagnosis in a standardized fashion. ARGO 2.0 has been designed to be template-independent and easily tailored to specific medical fields. We here demonstrate its feasibility in hemo lympho-pathology, by detailing its implementation, object of an ongoing validation campaign in a standing medical institute. ARGO 2.0 achieved an average Accuracy of 95.07%, an average precision of 94.85%, an average Recall of 96.31% and a F-Score of 95.32% onto the test set, outperforming both its embedded components, based on Natural Language Processing and Machine Learning.
更多查看译文
关键词
Medical Concept Embedding,Topic Modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn