Regulation of Sulfur Atoms in MoSx by Magneto-Electrodeposition for Hydrogen Evolution Reaction

SMALL(2024)

引用 0|浏览20
摘要
Compared with crystalline molybdenum sulfide (MoS2) employed as an efficient hydrogen evolution reaction (HER) catalyst, amorphous MoSx exhibits better activity. To synthesize amorphous MoSx, electrodeposition serving as a convenient and time-saving method is successfully applied. However, the loading mass is hindered by limited mass transfer efficiency and the available active sites require further improvement. Herein, magneto-electrodeposition is developed to synthesize MoSx with magnetic fields up to 9 T to investigate the effects of a magnetic field in the electrodeposition processing, as well as the induced electrochemical performance. Owing to the magneto-hydrodynamic effect, the loading mass of MoSx is obviously increased, and the terminal S2- serving as the active site is enhanced. The optimized MoSx catalyst delivers outstanding HER performance, achieving an overpotential of 50 mV at a current density of 10 mA cm(-2) and the corresponding Tafel slope of 59 mV dec(-1). The introduction of a magnetic field during the electrodeposition process will provide a novel route to prepare amorphous MoSx with improved electrochemical performance.
更多
查看译文
关键词
hydrogen evolution reaction,magneto-electrodeposition,magneto-hydrodynamic effect,MoSx
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn