Evidence for Correlated Electron Pairs and Triplets in Quantum Hall Interferometers
Nature Communications(2024)
摘要
The pairing of electrons is ubiquitous in electronic systems featuring attractive inter-electron interactions, as exemplified in superconductors. Counterintuitively, it can also be mediated in certain circumstances by the repulsive Coulomb interaction alone. Quantum Hall (QH) Fabry-Pérot interferometers (FPIs) tailored in a two-dimensional electron gas under a perpendicular magnetic field have been argued to exhibit such an unusual electron pairing, seemingly without attractive interactions. Here, we show evidence in graphene QH FPIs, revealing not only a similar electron pairing at bulk filling factor νB = 2, but also an unforeseen emergence of electron tripling characterized by a fractional Aharonov-Bohm flux period of h/3e (h is the Planck constant and e the electron charge) at νB = 3. Leveraging plunger-gate spectroscopy, we demonstrate that electron pairing (tripling) involves correlated charge transport on two (three) entangled QH edge channels. This spectroscopy indicates a quantum interference flux periodicity determined by the sum of the phases acquired by the distinct QH edge channels having slightly different interfering areas. Phase jumps observed in the pajama maps can be accounted for by the frequency beating between pairing/tripling modes and the outer interfering edge.
更多查看译文
关键词
Electron–Phonon Coupling,Ferromagnet Structures,Semiconductor Quantum Dots,Quantum Properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn