Dual Roles in Interspecies Electron Transfer of Carbon-Based Materials for Accelerating Anaerobic Digestion of Food Waste

BIOCHEMICAL ENGINEERING JOURNAL(2024)

引用 0|浏览8
摘要
Food waste is tremendously generated and leads to serious environmental pollution if it is improperly disposed. Anaerobic digestion is recognized as an effective biotechnology to treat food waste. In order to improve the conversion efficiency, the effect of carbon -based materials on anaerobic digestion of food waste was investigated, and the microbial communities and electron transport pathways were also analyzed. The results showed that adding biochar improved the performance of anaerobic digestion of food waste, but adding graphite had no significant effect. The maximum daily methane yield of 67.79 +/- 6.37 and 72.78 +/- 6.17 mL/g VS center dot d were obtained with 1.250 (BC10) and 1.875 (BC15) g biochar/g VS raw material added, increased by 13.27% and 21.61% in comparison with the control system. Meanwhile, the systems reached 80% of cumulative methane yield on day 10, and the increase of 13.50% (423.66 +/- 13.74 mL/g VS) and 13.57% (423.96 +/- 20.33 mL/g VS) were obtained for the methane yield. Adding biochar selectively increased the relative abundance of Syntrophomonas, Clostridium sensu stricto, Petrimonas, Clostridium XlVb, Comamonas, Acinetobacter, Methanothrix and Methanobacterium. The interaction between Methanobacterium and Syntrophomonas was also promoted due to biochar acted as an electron carrier. Therefore, biochar had complex regulation on electron transport pathway of anaerobic digestion and promoted the conversion efficiency of food waste.
更多
查看译文
关键词
Food waste,Carbon-based materials,Anaerobic digestion,Microbial community,Electron transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn