Graph Neural Networks in Intelligent Transportation Systems: Advances, Applications and Trends
CoRR(2024)
摘要
Intelligent Transportation System (ITS) is crucial for improving traffic congestion, reducing accidents, optimizing urban planning, and more. However, the complexity of traffic networks has rendered traditional machine learning and statistical methods less effective. With the advent of artificial intelligence, deep learning frameworks have achieved remarkable progress across various fields and are now considered highly effective in many areas. Since 2019, Graph Neural Networks (GNNs) have emerged as a particularly promising deep learning approach within the ITS domain, owing to their robust ability to model graph-structured data and address complex problems. Consequently, there has been increasing scholarly attention to the applications of GNNs in transportation, which have demonstrated excellent performance. Nevertheless, current research predominantly focuses on traffic forecasting, with other ITS domains, such as autonomous vehicles and demand prediction, receiving less attention. This paper aims to review the applications of GNNs across six representative and emerging ITS research areas: traffic forecasting, vehicle control system, traffic signal control, transportation safety, demand prediction, and parking management. We have examined a wide range of graph-related studies from 2018 to 2023, summarizing their methodologies, features, and contributions in detailed tables and lists. Additionally, we identify the challenges of applying GNNs in ITS and propose potential future research directions.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn