Plasma‐assisted Surface Engineering for Value Added in Starch Bioplastics: A Study on Enhanced Surface Properties and Natural Dye Immobilization
JOURNAL OF APPLIED POLYMER SCIENCE(2024)
摘要
This study examines the enhancement of starch-based bioplastic sheets for immobilizing natural dyes (ND) using plasma processes. The effects of poly(vinyl alcohol) (PVA) as a binder for ND were also assessed. Starch substrates were treated with air plasma, air plus 1,7-octadiene (OD) plasma, and air plus 2-methy-2-oxazoline (Ox) plasma before immobilizing curcumin and telang NDs, followed by an OD overcoating. Surface morphology, wettability, chemical composition, tensile strength, and surface charge were analyzed. Results showed improved wettability and dye immobilization, particularly for telang with a PVA binder and plasma treatment. OD overcoating prevented dye leaching. Air plasma reduced, while OD plasma maintained the starch's negative charge. XPS analysis indicated increased oxygen and nitrogen presence after air plasma and enhanced aliphatic carbon from OD overcoating. Tensile strength was largely unaffected, but elongation at break was reduced, especially after air and OD plasma treatment.
更多查看译文
关键词
bioplastics,curcumin,natural dyes,plasma treatment,surface modification,telang
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn