Layered Ferromagnetic Structure Caused by the Proximity Effect and Interlayer Charge Transfer for LaNiO3/LaMnO3 Superlattices.
NANO LETTERS(2024)
摘要
Magnetic proximity-induced magnetism in paramagnetic LaNiO3 (LNO) has spurred intensive investigations in the past decade. However, no consensus has been reached so far regarding the magnetic order in LNO layers in relevant heterostructures. This paper reports a layered ferromagnetic structure for the (111)-oriented LNO/LaMnO3 (LMO) superlattices. It is found that each period of the superlattice consisted of an insulating LNO-interfacial phase (five unit cells in thickness, ∼1.1 nm), a metallic LNO-inner phase, a poorly conductive LMO-interfacial phase (three unit cells in thickness, ∼0.7 nm), and an insulating LMO-inner phase. All four of these phases are ferromagnetic, showing different magnetizations. The Mn-to-Ni interlayer charge transfer is responsible for the emergence of a layered magnetic structure, which may cause magnetic interaction across the LNO/LMO interface and double exchange within the LMO-interfacial layer. This work indicates that the proximity effect is an effective means of manipulating the magnetic state and associated properties of complex oxides.
更多查看译文
关键词
LaNiO3,LaMnO3,proximityeffect,charge transfer,layered ferromagnetic structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn