ConstraintChecker: A Plugin for Large Language Models to Reason on Commonsense Knowledge Bases

arXiv (Cornell University)(2024)

引用 0|浏览47
摘要
Reasoning over Commonsense Knowledge Bases (CSKB), i.e. CSKB reasoning, has been explored as a way to acquire new commonsense knowledge based on reference knowledge in the original CSKBs and external prior knowledge. Despite the advancement of Large Language Models (LLM) and prompt engineering techniques in various reasoning tasks, they still struggle to deal with CSKB reasoning. One of the problems is that it is hard for them to acquire explicit relational constraints in CSKBs from only in-context exemplars, due to a lack of symbolic reasoning capabilities (Bengio et al., 2021). To this end, we proposed **ConstraintChecker**, a plugin over prompting techniques to provide and check explicit constraints. When considering a new knowledge instance, ConstraintChecker employs a rule-based module to produce a list of constraints, then it uses a zero-shot learning module to check whether this knowledge instance satisfies all constraints. The acquired constraint-checking result is then aggregated with the output of the main prompting technique to produce the final output. Experimental results on CSKB Reasoning benchmarks demonstrate the effectiveness of our method by bringing consistent improvements over all prompting methods. Codes and data are available at .
更多
查看译文
关键词
Complex Word Identification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn