Hand Pose-based Task Learning from Visual Observations with Semantic Skill Extraction

IEEE International Symposium on Robot and Human Interactive Communication(2020)

引用 1|浏览10
摘要
Learning from Demonstrations is a promising technique to transfer task knowledge from a user to a robot. We propose a framework for task programming by observing the human hand pose and object locations solely with a depth camera. By extracting skills from the demonstrations, we are able to represent what the robot has learned, generalize to unseen object locations and optimize the robotic execution instead of replaying a non-optimal behavior. A two-staged segmentation algorithm that employs skill template matching via Hidden Markov Models has been developed to extract motion primitives from the demonstration and gives them semantic meanings. In this way, the transfer of task knowledge has been improved from a simple replay of the demonstration towards a semantically annotated, optimized and generalized execution. We evaluated the extraction of a set of skills in simulation and prove that the task execution can be optimized by such means.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn