A Module-Level Configuration Methodology for Programmable Camouflaged Logic
ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS(2024)
摘要
Logic camouflage is a widely adopted technique that mitigates the threat of intellectual property (IP) piracy and overproduction in the integrated circuit (IC) supply chain. Camouflaged logic achieves functional obfuscation through physical-level ambiguity and post-manufacturing programmability. However, discussions on programmability are confined to the level of logic cells/gates, limiting the broader-scale application of logic camouflage. In this work, we propose a novel module-level configuration methodology for programmable camouflaged logic that can be implemented without additional hardware ports and with negligible resources. We prove theoretically that the configuration of the programmable camouflaged logic cells can be achieved through the inputs and netlist of the original module. Further, we propose a novel lightweight ferroelectric FET (FeFET)-based reconfigurable logic gate (rGate) family and apply it to the proposed methodology. With the flexible replacement and the proposed configuration-aware conversion algorithm, this work is characterized by the input-only programming scheme as well as the combination of high output error rate and point-function-like defense. Evaluations show an average of >95% of the alternative rGate location for camouflage, which is sufficient for the security-aware design. We illustrate the exponential complexity in function state traversal and the enhanced defense capability of locked blackbox against Boolean Satisfiability (SAT) attacks compared with key-based methods. We also preserve an evident output Hamming distance and introduce negligible hardware overheads in both gate-level and module-level evaluations under typical benchmarks.
更多查看译文
关键词
Hardware security,IP protection,logic camouflage,ferroelectric FET,reconfiguration,nonvolatile memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn