Effect of Particle Strength on SiCp/Al Composite Properties with Network Architecture Design
MATERIALS(2024)
摘要
Recent works have experimentally proven that metal matrix composites (MMCs) with network architecture present improved strength–ductility match. It is envisaged that the performance of architecturally designed composites is particularly sensitive to reinforcement strength. Here, reinforcing particles with various fracture strengths were introduced in numerical models of composites with network particle distribution. The results revealed that a low particle strength (1 GPa) led to early-stage failure and brittle fracture. Nevertheless, a high particle strength (5 GPa) delayed the failure behavior and led to ductile fracture at the SiC/Al–Al macro-interface areas. Therefore, the ultimate tensile strengths (UTS) of the network SiC/Al composites increased from 290 to 385 MPa, with rising particle strength from 1 to 5 GPa. Based on the composite property, different particle fracture threshold strengths existed for homogeneous (~2.7 GPa) and network (~3.7 GPa) composites. The higher threshold strength in network composites was related to the increased stress concentration induced by network architecture. Unfortunately, the real fracture strength of the commercial SiC particle is 1–2 GPa, implying that it is possible to select a high-strength particle necessary for efficient network architecture design.
更多查看译文
关键词
metal matrix composites (MMCs),finite element analysis (FEA),interface,micro-mechanics,network architecture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn