Paralinguistics-Aware Speech-Empowered Large Language Models for Natural Conversation
NeurIPS 2024(2024)
摘要
Recent work shows promising results in expanding the capabilities of large language models (LLM) to directly understand and synthesize speech. However, an LLM-based strategy for modeling spoken dialogs remains elusive, calling for further investigation. This paper introduces an extensive speech-text LLM framework, the Unified Spoken Dialog Model (USDM), designed to generate coherent spoken responses with naturally occurring prosodic features relevant to the given input speech without relying on explicit automatic speech recognition (ASR) or text-to-speech (TTS) systems. We have verified the inclusion of prosody in speech tokens that predominantly contain semantic information and have used this foundation to construct a prosody-infused speech-text model. Additionally, we propose a generalized speech-text pretraining scheme that enhances the capture of cross-modal semantics. To construct USDM, we fine-tune our speech-text model on spoken dialog data using a multi-step spoken dialog template that stimulates the chain-of-reasoning capabilities exhibited by the underlying LLM. Automatic and human evaluations on the DailyTalk dataset demonstrate that our approach effectively generates natural-sounding spoken responses, surpassing previous and cascaded baselines. Our code and checkpoints are available at https://github.com/naver-ai/usdm.
更多查看译文
关键词
Spoken Dialog Modeling,Speech-Text Pretraining,Paralingustics,Spoken Language Model,LLM,USDM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn