Enhanced Electrocatalytic Oxygen Reduction Reaction of TiO2 Nanotubes by Combining Surface Oxygen Vacancy Engineering and Zr Doping
Nanomaterials(2024)
摘要
This work examines the cooperative effect between Zr doping and oxygen vacancy engineering in anodized TiO2 nanotubes (TNTs) for enhanced oxygen reduction reactions (ORRs). Zr dopant and annealing conditions significantly affected the electrocatalytic characteristics of grown TNTs. Zr doping results in Zr4+ substituted for Ti4+ species, which indirectly creates oxygen vacancy donors that enhance charge transfer kinetics and reduce carrier recombination in TNT bulk. Moreover, oxygen vacancies promote the creation of unsaturated Ti3+(Zr3+) sites at the surface, which also boosts the ORR interfacial process. Annealing at reductive atmospheres (e.g., H2, vacuum) resulted in a larger increase in oxygen vacancies, which greatly enhanced the ORR activity. In comparison to bare TNTs, Zr doping and vacuum treatment (Zr:TNT–Vac) significantly improved the conductivity and activity of ORRs in alkaline media. The finding also provides selective hydrogen peroxide production by the electrochemical reduction of oxygen.
更多查看译文
关键词
TiO2 nanotubes,metal doping,oxygen reduction reaction,oxygen vacancy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn