Organized Assembly of Chitosan into Mechanically Strong Bio-Composite by Introducing a Recombinant Insect Structural Protein Ofcph-1
CARBOHYDRATE POLYMERS(2024)
摘要
Chitosan, known for its appealing biological properties in packaging and biomedical applications, faces challenges in achieving a well-organized crystalline structure for mechanical excellence under mild conditions. Herein, we propose a facile and mild bioengineering approach to induce organized assembly of amorphous chitosan into mechanically strong bio-composite via incorporating a genetically engineered insect structural protein, the cuticular protein hypothetical-1 from the Ostrinia furnacalis (OfCPH-1). OfCPH-1 exhibits high binding affinity to chitosan via hydrogen-bonding interactions. Simply mixing a small proportion (0.5w/w%) of bioengineered OfCPH-1 protein with acidic chitosan precursor induces the amorphous chitosan chains to form fibrous networks with hydrated chitosan crystals, accompanied with a solution-to-gel transition. We deduce that the water shell destruction driven by strong protein-chitosan interactions, triggers the formation of well-organized crystalline chitosan, which therefore offers the chitosan with significantly enhanced swelling resistance, and strength and modulus that outperforms that of most reported chitosan-based materials as well as petroleum-based plastics. Moreover, the composite exhibits a stretch-strengthening behavior similar to the training living muscles on cyclic load. Our work provides a route for harnessing the OfCPH-1-chitosan interaction in order to form a high-performance, sustainably sourced bio-composite.
更多查看译文
关键词
Bio-composite,Chitosan,Insect cuticle protein,Hydrated chitosan crystal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn