Neural Mesh Fusion: Unsupervised 3D Planar Surface Understanding
2024 IEEE International Conference on Image Processing (ICIP)(2024)
摘要
This paper presents Neural Mesh Fusion (NMF), an efficient approach for jointoptimization of polygon mesh from multi-view image observations andunsupervised 3D planar-surface parsing of the scene. In contrast to implicitneural representations, NMF directly learns to deform surface triangle mesh andgenerate an embedding for unsupervised 3D planar segmentation throughgradient-based optimization directly on the surface mesh. The conductedexperiments show that NMF obtains competitive results compared tostate-of-the-art multi-view planar reconstruction, while not requiring anyground-truth 3D or planar supervision. Moreover, NMF is significantly morecomputationally efficient compared to implicit neural rendering-based scenereconstruction approaches.
更多查看译文
关键词
Multi-view Planar Reconstruction,Neural Radiance Fields,Contrastive Learning,Triangle Mesh
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn