Neural Mesh Fusion: Unsupervised 3D Planar Surface Understanding

2024 IEEE International Conference on Image Processing (ICIP)(2024)

引用 0|浏览25
摘要
This paper presents Neural Mesh Fusion (NMF), an efficient approach for jointoptimization of polygon mesh from multi-view image observations andunsupervised 3D planar-surface parsing of the scene. In contrast to implicitneural representations, NMF directly learns to deform surface triangle mesh andgenerate an embedding for unsupervised 3D planar segmentation throughgradient-based optimization directly on the surface mesh. The conductedexperiments show that NMF obtains competitive results compared tostate-of-the-art multi-view planar reconstruction, while not requiring anyground-truth 3D or planar supervision. Moreover, NMF is significantly morecomputationally efficient compared to implicit neural rendering-based scenereconstruction approaches.
更多
查看译文
关键词
Multi-view Planar Reconstruction,Neural Radiance Fields,Contrastive Learning,Triangle Mesh
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn