Randomness Regularization with Simple Consistency Training for Neural Networks

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE(2024)

引用 0|浏览53
摘要
Randomness is widely introduced in neural network training to simplify model optimization or avoid the over-fitting problem. Among them, dropout and its variations in different aspects (e.g., data, model structure) are prevalent in regularizing the training of deep neural networks. Though effective and performing well, the randomness introduced by these dropout-based methods causes nonnegligible inconsistency between training and inference. In this paper, we introduce a simple consistency training strategy to regularize such randomness, namely R-Drop, which forces two output distributions sampled by each type of randomness to be consistent. Specifically, R-Drop minimizes the bidirectional KL-divergence between two output distributions produced by dropout-based randomness for each training sample. Theoretical analysis reveals that R-Drop can reduce the above inconsistency by reducing the inconsistency among the sampled sub structures and bridging the gap between the loss calculated by the full model and sub structures. Experiments on 7 widely-used deep learning tasks (23 datasets in total) demonstrate that R-Drop is universally effective for different types of neural networks (i.e., feed-forward, recurrent, and graph neural networks) and different learning paradigms (supervised, parameter-efficient, and semi-supervised). In particular, it achieves state-of-the-art performances with the vanilla Transformer model on WMT14 English -> German translation (30.91 BLEU) and WMT14 English -> French translation (43.95 BLEU), even surpassing models trained with extra large-scale data and expert-designed advanced variants of Transformer models.
更多
查看译文
关键词
Randomness,regularization,consistency training,neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn