Diverse cell death signature based subtypes predict the prognosis and immune characteristics within glioma

biorxiv(2024)

引用 0|浏览21
摘要
Background Cell death plays an essential role in the pathogenesis, progression, drug resistance and recurrence of glioma. Although multiple cell death pathways are involved in glioma development, there is lack of a stratification and prognostic modelling for glioma based on the integration of diverse genes for cell deaths. Methods In this study, 1254 diverse cell death (DCD)-related genes were assessed using the ConsensusClusterPlus assessment to identify DCD patterns in glioma. CIBERSORT, ssGSEA, and ESTIMATE algorithms were applied to evaluate immune microenvironment differences between subtypes. LASSO Cox regression was used to screen prognosis-related DCD genes, and a risk score model was constructed. TMB, TIDE, immune infiltration, and immunotherapy response was analyzed to evaluate the immune characteristics. Results Two DCD-related subgroups named Clusters 1 and 2, with distinct DCD levels, immune characteristics, and prognoses, were determined from glioma samples. A DCD-based risk score model was developed to assess DCD levels in glioma patients and divide patients into high- and low-risk groups. We found this risk model can be used as an independent prognostic factor for glioma patients. Notably, glioma patients with low risk scores exhibited subdued DCD activity, prolonged survival, and a favorable disposition towards benefiting from immune checkpoint blockade therapies. Conclusions This study established a novel signature classification and a risk model by comprehensively analyzing patterns of various DCDs to stratify glioma patients and to predict the prognosis and immune characteristics of glioma. We provided a theoretical basis for the clinical application of DCD-related genes in glioma prognosis and immunotherapy. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn