Seasonal and Decadal Subsurface Thaw Dynamics of an Aufeis Feature Investigated Through Numerical Simulations

HYDROLOGICAL PROCESSES(2024)

引用 0|浏览6
摘要
Aufeis (also known as icings) are large sheet-like masses of layered ice that form in river channels in arctic environments in the winter as groundwater discharges to the land surface and subsequently freezes. Aufeis are important sources of water for Arctic river ecosystems, bolstering late summer river discharge and providing habitat for caribou escaping insect harassment. The aim of this research is to use numerical simulations to evaluate a conceptual model of subsurface hydrogeothermal conditions that can lead to the formation of aufeis. We used a conceptual model based on geophysical data from the Kuparuk aufeis field on the North Slope of Alaska to develop a two-dimensional heterogeneous vertical profile model of groundwater flow, heat transport, and freeze/thaw dynamics. Modelling results showed that groundwater can flow to the land surface through subvertical high permeability pathways during winter months when the lower permeability soils near the land surface are frozen. The groundwater discharge can freeze on the surface, contributing to aufeis formation throughout the winter. We performed sensitivity analyses on subsurface properties and surface temperature and found that aufeis formation is most sensitive to the volume of unfrozen water available in the subsurface and the rate at which the subsurface water travels to the land surface. Although a trend of warming air temperatures will lead to a greater volume of unfrozen subsurface water, the aufeis volume can be reduced under warming conditions if the period of time for which air temperatures are below freezing is reduced. Warm groundwater can discharge to the land surface during the winter through unfrozen pathways caused by permeability variations in the subsurface. Water that discharges during the winter can subsequently freeze on the land surface to form aufeis. image
更多
查看译文
关键词
aufeis,groundwater,Kuparuk aufeis field,SUTRA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn