Recent Progress on Molecular Catalysts Integrated Photoelectrochemical Systems for Water Oxidation

Materials Today Catalysis(2024)

引用 0|浏览8
摘要
The major limitations of photoelectrochemical (PEC) water splitting lies in the currently unsatisfying efficiency and stability of the semiconductor materials-based water splitting systems. By addressing these limitations, the immobilization of the molecular catalysts on semiconductor photoanodes to establish a hybrid inorganic-organic PEC system has attracted an increasing research attention. It is crucial to choose a suitable molecular catalyst and effectively couple it into a hybrid photoelectrode system. In this review, focusing on the water oxidation process, molecular catalysts integrated photoelectrochemical water oxidation systems are highlighted from the perspective of the roles of molecular catalysts and the integration strategies in the hybrid system. The most recent advances are summarized with various case studies presented, based on which perspectives are proposed to provide guidance toward the rational design of an integrated system for future development.
更多
查看译文
关键词
Molecular catalysis,Photoelectrochemical,Water splitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn