Divergent Impacts of Biomass Burning and Fossil Fuel Combustion Aerosols on Fog‐Cloud Microphysics and Chemistry: Novel Insights from Advanced Aerosol‐Fog Sampling

GEOPHYSICAL RESEARCH LETTERS(2024)

引用 0|浏览23
摘要
Abstract Activation of biomass burning aerosols (BBA) and fossil fuel combustion aerosols (FFA) in fogs and clouds significantly impact regional air quality through aqueous chemistry and climate by affecting cloud microphysics. However, we lack direct observations of how these aerosols behave in fogs and clouds. Using a newly developed aerosol‐cloud sampling system, we conducted observations during fog events and found that BBA, despite their high organic content, effectively contributed to super‐micron interstitial aerosols and fog droplets in low supersaturation fogs. In contrast, FFA, predominantly externally mixed organic, did not grow beyond the super‐micron size in fogs due to their near‐hydrophobic nature. Measurements conducted under supersaturations relevant for cloud formation revealed that portions of FFA could serve as cloud condensation nuclei, but only when supersaturation exceeded ∼0.14%. These findings have broad implications for future investigations into the influence of BBA and FFA on fog and cloud chemistry and their interactions with clouds.
更多
查看译文
关键词
fogs,clouds,activation,biomass burning,fossil fuel combustion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn