Soil Acidification Enhanced Soil Carbon Sequestration Through Increased Mineral Protection
PLANT AND SOIL(2024)
摘要
As a significant land carbon sink, highly acid subtropical forests in southern China continued to accumulate a significant amount of soil carbon under elevated acid deposition, yet the mechanism of how soil organic carbon (SOC) and its two components: particulate (POC) and mineral-associated (MAOC) organic carbon increased remain unclear. We aim to assess which mechanism and drivers dominated the accumulation of SOC and its two fractions under elevated acid deposition. We conducted a 11-year field acid addition experiment to study how acid deposition affected the accumulation of SOC and its fractions. Lignin phenols and amino sugars were used as two tracers for plant- and microbe-derived carbon. We found that both POC (0–20 cm) and MAOC (10–20 cm) were significantly increased by acid addition. Acid addition significantly reduced the contributions of fungal-, bacterial- or total microbial residue carbon to SOC but significantly increased the plant-derived soil carbon in both soil depths. The increase of lignin phenol and suppressed soil organic matter decomposition from soil microbes suggested that soil POC increased with acid addition. Soil acidification strongly enhanced MAOC accumulation through increased lignin and mineral protection by iron-aluminum oxides and cations. Our results showed that increased mineral protection of plant-derived carbon was the dominant driver of the increased SOC sequestration under acid addition. This finding identified the dominant pathway for SOC accumulation in a highly acidic subtropical forest and provides new insights into understanding how plant-soil-mineral interact under increasing acid deposition in the region.
更多查看译文
关键词
Soil acidification,Mineral-associated carbon,Amino sugar,Lignin phenols,Mineral oxides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn