Local thermal non-equilibrium (LTNE) effects revealed through porous media heat transport experiment

crossref(2024)

引用 0|浏览8
摘要
Precise prediction of heat transport in porous media holds crucial significance in Earth Sciences for diverse applications, ranging from the design of geothermal systems to utilizing heat as a tracer in aquifers. Traditionally, the description of heat transport has been simplified by assuming local thermal equilibrium (LTE), where the temperature within the fluid and solid phases in the representative elementary volume is presumed to reach an instant equilibrium. In reality, assuming two distinct phases coupled by heat transfer across their surface area describes the complete physics and is referred to as the local thermal non-equilibrium (LTNE) model. While earlier research delved into the theoretical aspects of LTNE effects, a notable gap exists due to the absence of experimental data to elucidate the heat transport mechanism in porous aquifers containing natural grains. To address this gap and investigate LTNE on a granular scale, we conducted systematic flow-through experiments employing porous media containing glass spheres with distinct grain sizes of 5, 10, 15, 20, 25 and 30 mm. Each sphere contained a small temperature sensor for the solid temperature, accompanied by sensors in the adjacent pore space to measure the fluid temperature. Our findings revealed that the temperature difference between two phases grows with increasing grain size and flow velocity ranging from 9 to 61 m d-1, thereby highlighting qualitative LTNE effects in relation to grain size and flow velocity. To further enhance our understanding, we used a numerical model to investigate the heat transfer coefficient, fitting the LTNE model to the experimental data. These simulation results indicated evidence of non-uniform flow which we included into our model to estimate its effects on heat transport. This comprehensive approach contributes valuable insights into the intricate interplay of LTNE effects, grain sizes, and flow velocity, advancing our understanding of heat transport in natural porous media.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn