Ionizing Radiation‑induced Modification of Nialamide As an Anti‑inflammatory Agent Against Lipopolysaccharide‑induced RAW 264.7 and DH82 Cells

Experimental and Therapeutic Medicine(2024)

引用 0|浏览4
摘要
Nialamide is a non-selective monoamine oxidase inhibitor that was widely used as an antidepressant. However, it has been prohibited for decades in the depressive medicine market due to the adverse hepatotoxic side effects. The re-use of drugs that have been withdrawn from the market represents a promising approach for the development of novel incrementally modified drugs and, in this context, ionizing radiation can serve as a powerful tool for producing new drug candidates. The present study exposed nialamide to γ radiation at 50 kGy to obtain the novel cyclized benzylamide, nialaminosin (compound 2), along with five known compounds, 3-amino-N-benzylpropanamide (compound 3), 3-methoxy-N-benzylpropanamide (compound 4), 3-hydroxy-N-benzylpropanamide (HBPA; compound 5), N-benzylpropanamide (compound 6) and isonicotinamide (compound 7). Among the isolated compounds, HBPA was established to inhibit the lipopolysaccharide-induced overproduction of pro-inflammatory mediators, including nitric oxide (NO) and prostaglandin E2 and cytokines including TNF-α, IL-6 and IL-10, without causing cytotoxicity to both RAW 264.7 and DH82 cells. Furthermore, HBPA was found to reduce the protein expression of inducible NO synthase and cyclooxygenase-2 in macrophages and compared with nialamide, it was established to have more potent radical scavenging activity. The present study therefore suggested the application of HBPA for the improvement of anti-inflammatory properties using ionizing radiation technology on the withdrawn drug nialamide.
更多
查看译文
关键词
ionizing radiation,nialamide,degradation,anti- inflammatory,murine and canine macrophages
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn