Engineered Migrasomes: A Robust, Thermally Stable Vaccination Platform
bioRxiv (Cold Spring Harbor Laboratory)(2024)
摘要
The burgeoning abilities of pathogens and tumor cells to evade immune responses underscore the urgent need for innovative vaccination platforms based on a variety of biological mechanisms. The current logistical challenges associated with cold-chain (i.e. low-temperature) transportation particularly impacts access to vaccines in the global south. We recently discovered organelles called migrasomes, and herein we investigate the potential of migrasomes as an alternative vaccination platform. Their inherent stability and their enrichment with immune-modulating molecules make migrasomes promising candidates, but their low yield presents a hurdle. We address this problem through our engineered migrasome-like vesicles (eMigrasomes), which emulate the biophysical attributes of natural migrasomes with substantially improved yield. We show that eMigrasomes loaded with a model antigen elicit potent antibody responses and maintain stability at room temperature. We demonstrate that eMigrasomes bearing the SARS-CoV-2 Spike protein induce robust humoral protection against the virus. Our study demonstrates the potential of eMigrasome-based vaccines as a unique, robust, and accessible alternative to traditional methods.### Competing Interest StatementLi Yu is the scientific founder of Migrasome Therapeutics.
更多查看译文
关键词
Vaccine Development,Vaccines
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn