MAGICK: A Large-scale Captioned Dataset from Matting Generated Images Using Chroma Keying
CVPR 2024(2024)
摘要
We introduce MAGICK, a large-scale dataset of generated objects with high-quality alpha mattes. While image generation methods have produced segmentations, they cannot generate alpha mattes with accurate details in hair, fur, and transparencies. This is likely due to the small size of current alpha matting datasets and the difficulty in obtaining ground-truth alpha. We propose a scalable method for synthesizing images of objects with high-quality alpha that can be used as a ground-truth dataset. A key idea is to generate objects on a single-colored background so chroma keying approaches can be used to extract the alpha. However, this faces several challenges, including that current text-to-image generation methods cannot create images that can be easily chroma keyed and that chroma keying is an underconstrained problem that generally requires manual intervention for high-quality results. We address this using a combination of generation and alpha extraction methods. Using our method, we generate a dataset of 150,000 objects with alpha. We show the utility of our dataset by training an alpha-to-rgb generation method that outperforms baselines. Please see our project website at https://ryanndagreat.github.io/MAGICK/.
更多查看译文
关键词
alpha,matting,dataset,generation,text,image,multimodal,chroma,keying,transparent,greenscreen,synthetic,rgb,magick,deepfloyd,stable,diffusion,controlnet,sdedit,compositing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn