Multimodal Graph Neural Architecture Search under Distribution Shifts

THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8(2024)

引用 0|浏览40
摘要
Multimodal graph neural architecture search (MGNAS) has shown great success for automatically designing the optimal multimodal graph neural network (MGNN) architecture by leveraging multimodal representation, crossmodal information and graph structure in one unified framework. However, existing MGNAS fails to handle distribution shifts that naturally exist in multimodal graph data, since the searched architectures inevitably capture spurious statistical correlations under distribution shifts. To solve this problem, we propose a novel Out-of-distribution Generalized Multimodal Graph Neural Architecture Search (OMG-NAS) method which optimizes the MGNN architecture with respect to its performance on decorrelated OOD data. Specifically, we propose a multimodal graph representation decorrelation strategy, which encourages the searched MGNN model to output representations that eliminate spurious correlations through iteratively optimizing the feature weights and controller. In addition, we propose a global sample weight estimator that facilitates the sharing of optimal sample weights learned from existing architectures. This design promotes the effective estimation of the sample weights for candidate MGNN architectures to generate decorrelated multimodal graph representations, concentrating more on the truly predictive relations between invariant features and ground-truth labels. Extensive experiments on real-world multimodal graph datasets demonstrate the superiority of our proposed method over SOTA baselines.
更多
查看译文
关键词
Graph Matching,Large-scale Graphs,Signal Processing on Graphs,Subgraph Isomorphism,Schema Matching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn