Finding Visual Task Vectors

COMPUTER VISION-ECCV 2024, PT XLIII(2025)

引用 0|浏览129
摘要
Visual Prompting is a technique for teaching models to perform a visual taskvia in-context examples, without any additional training. In this work, weanalyze the activations of MAE-VQGAN, a recent Visual Prompting model, and findtask vectors, activations that encode task-specific information. Equipped withthis insight, we demonstrate that it is possible to identify the task vectorsand use them to guide the network towards performing different tasks withoutproviding any input-output examples. To find task vectors, we compute theaverage intermediate activations per task and use the REINFORCE algorithm tosearch for the subset of task vectors. The resulting task vectors guide themodel towards performing a task better than the original model without the needfor input-output examples.
更多
查看译文
关键词
Visual Representation,Interactive Visualization,Visual Analytics,Information Visualization,Graph Visualization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn