Lamellar Nanoporous Metal/Intermetallic Compound Heterostructure Regulating Dendrite-Free Zinc Electrodeposition for Wide-Temperature Aqueous Zinc-Ion Battery
ADVANCED MATERIALS(2024)
摘要
Aqueous zinc-ion batteries are attractive post-lithium battery technologies for grid-scale energy storage because of their inherent safety, low cost and high theoretical capacity. However, their practical implementation in wide-temperature surroundings persistently confronts irregular zinc electrodeposits and parasitic side reactions on metal anode, which leads to poor rechargeability, low Coulombic efficiency and short lifespan. Here, this work reports lamellar nanoporous Cu/Al2Cu heterostructure electrode as a promising anode host material to regulate high-efficiency and dendrite-free zinc electrodeposition and stripping for wide-temperatures aqueous zinc-ion batteries. In this unique electrode, the interconnective Cu/Al2Cu heterostructure ligaments not only facilitate fast electron transfer but work as highly zincophilic sites for zinc nucleation and deposition by virtue of local galvanic couples while the interpenetrative lamellar channels serving as mass transport pathways. As a result, it exhibits exceptional zinc plating/stripping behaviors in aqueous hybrid electrolyte of diethylene glycol dimethyl ether and zinc trifluoromethanesulfonate at wide temperatures ranging from 25 to -30 degrees C, with ultralow voltage polarizations at various current densities and ultralong lifespan of >4000 h. The outstanding electrochemical properties enlist full cell of zinc-ion batteries constructed with nanoporous Cu/Al2Cu and ZnxV2O5/C to maintain high capacity and excellent stability for >5000 cycles at 25 and -30 degrees C.
更多查看译文
关键词
anode host materials,aqueous batteries,nanoporous alloy electrode,wide temperature,zinc-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn