Polyaspartic Acid Urea Increased Maize Yield by Enhancing Leaf N Turnover Efficiency and Soil Microbial Diversity
Agronomy(2024)
摘要
The release rates of different nitrogen (N) fertilizers and their matching with plant demand determine crop yields. A field experiment was conducted to investigate the effect of using no fertilizer (N0), regular urea applied at rates of 180 kg ha−1 (N180) and 240 kg ha−1 (N240), controlled-release urea applied at a rate of 180 kg ha−1 (H180), and polyaspartic acid urea (PASP) on maize seed yield, soil microbial community diversity, and leaf N-converting enzymes. XianYu 688 was selected as the test maize variety. All cobs in the sample plots were collected per unit area to estimate maize yield. The enzyme-linked immunosorbent assay (ELISA) was used to determine leaf N-converting enzyme activities. Soil DNA was extracted using the Power Max Soil DNA Isolation Kit and subsequently sequenced using the Illumina HiSeq platform (PE 2500) to determine the microbial diversity and communities. The results showed that the highest seed yields were obtained under N240 and PASP180 treatments. The N-partial factor productivity of the PASP180 fertilizer was significantly higher than that of the other treatments. PASP treatment significantly increased maize seed yield due to the potential of storing more N in the ear leaves. Additionally, partial N productivity showed a significant positive correlation with the soil microbial Shannon, Chao1, and ACE indices, indicating that increased soil microbial diversity promoted N efficiency in maize. Further analysis revealed that PASP treatment increased seed yield by promoting leaf N-converting enzyme activity and soil microbial diversity. The results revealed that nitrate reductase (NR), glutamate synthase (GOGAT), and glutaminase (GLNS) enzyme activities in maize leaves were higher under the PASP treatment than under other fertilizer treatments. The PASP treatment significantly enhanced soil microbial diversity at different maize stages. Our study revealed the effects of using different N fertilizers on seed yield by examining their impact on soil microbial diversity and leaf N-converting enzyme activity. This study provides essential insights into maize production and soil fertility maintenance in the North China Plain.
更多查看译文
关键词
nitrogen use efficiency,maize,enzyme,urea,microbial diversity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn