Visual Interpretable MRI Fine Grading of Meniscus Injury for Intelligent Assisted Diagnosis and Treatment
NPJ DIGITAL MEDICINE(2024)
摘要
Meniscal injury represents a common type of knee injury, accounting for over 50% of all knee injuries. The clinical diagnosis and treatment of meniscal injury heavily rely on magnetic resonance imaging (MRI). However, accurately diagnosing the meniscus from a comprehensive knee MRI is challenging due to its limited and weak signal, significantly impeding the precise grading of meniscal injuries. In this study, a visual interpretable fine grading (VIFG) diagnosis model has been developed to facilitate intelligent and quantified grading of meniscal injuries. Leveraging a multilevel transfer learning framework, it extracts comprehensive features and incorporates an attributional attention module to precisely locate the injured positions. Moreover, the attention-enhancing feedback module effectively concentrates on and distinguishes regions with similar grades of injury. The proposed method underwent validation on FastMRI_Knee and Xijing_Knee dataset, achieving mean grading accuracies of 0.8631 and 0.8502, surpassing the state-of-the-art grading methods notably in error-prone Grade 1 and Grade 2 cases. Additionally, the visually interpretable heatmaps generated by VIFG provide accurate depictions of actual or potential meniscus injury areas beyond human visual capability. Building upon this, a novel fine grading criterion was introduced for subtypes of meniscal injury, further classifying Grade 2 into 2a, 2b, and 2c, aligning with the anatomical knowledge of meniscal blood supply. It can provide enhanced injury-specific details, facilitating the development of more precise surgical strategies. The efficacy of this subtype classification was evidenced in 20 arthroscopic cases, underscoring the potential enhancement brought by intelligent-assisted diagnosis and treatment for meniscal injuries.
更多查看译文
关键词
Meniscus Injuries,Knee Biomechanics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn