Improved Specificity and Efficacy of Base-Editing Therapies with Hybrid Guide RNAs
bioRxiv the preprint server for biology(2024)
摘要
Phenylketonuria (PKU), hereditary tyrosinemia type 1 (HT1), and mucopolysaccharidosis type 1 (MPSI) are autosomal recessive disorders linked to the phenylalanine hydroxylase ( PAH ) gene, fumarylacetoacetate hydrolase ( FAH ) gene, and alpha-L-iduronidase ( IDUA ) gene, respectively. Potential therapeutic strategies to ameliorate disease include corrective editing of pathogenic variants in the PAH and IDUA genes and, as a variant-agnostic approach, inactivation of the 4-hydroxyphenylpyruvate dioxygenase ( HPD ) gene, a modifier of HT1, via adenine base editing. Here we evaluated the off-target editing profiles of therapeutic lead guide RNAs (gRNAs) that, when combined with adenine base editors correct the recurrent PAH P281L variant, PAH R408W variant, or IDUA W402X variant or disrupt the HPD gene in human hepatocytes. To mitigate off-target mutagenesis, we systematically screened hybrid gRNAs with DNA nucleotide substitutions. Comprehensive and variant-aware specificity profiling of these hybrid gRNAs reveal dramatically reduced off-target editing and reduced bystander editing. Lastly, in a humanized PAH P281L mouse model, we showed that when formulated in lipid nanoparticles (LNPs) with adenine base editor mRNA, selected hybrid gRNAs revert the PKU phenotype, substantially enhance on-target editing, and reduce bystander editing in vivo . These studies highlight the utility of hybrid gRNAs to improve the safety and efficacy of base-editing therapies.
更多查看译文
关键词
RNA Editing,RNA-Guided,Multiplex Genome Editing,Gene Editing,MicroRNA Processing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn