Deep Learning-Based Three-Dimensional Crack Damage Detection Method Using Point Clouds Without Color Information

STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL(2024)

引用 0|浏览3
摘要
Automated high-precision crack detection on building structures under poor lighting conditions poses a significant challenge for traditional image-based methods. Overcoming this challenge is crucial to enhance the practical applicability of structural health monitoring and rapid damage assessment, especially in post-disaster scenarios like earthquakes. To address this challenge, this paper presents a deep learning-based three-dimensional crack detection method that utilizes light detection and ranging (LiDAR) point cloud data. Our method is specifically designed to address crack detection without relying on color information input, resulting in high-precision and robust apparent damage detection. The key contribution of this paper is the NL-3DCrack model, which enables automated three-dimensional crack semantic segmentation. This model comprises a feature embedding module, an incomplete neighbor feature extraction module, a decoder, and morphological filtering. Notably, we introduce an innovative incomplete neighbor mechanism to effectively mitigate the impact of outliers. To validate the effectiveness of our proposed method, we establish two three-dimensional crack detection datasets, namely the Luding dataset and the terrestrial laser scanner dataset, which are based on earthquake disasters. Experimental results demonstrate that our method achieves remarkable performance, with an intersection-over-union of 39.62% and 51.33% on the respective test sets, surpassing existing point cloud-based semantic segmentation models. Ablation experiments further confirm the effectiveness of our approach. In summary, our method showcases exceptional crack detection performance on LiDAR data using only XYZI channels. With its high precision and reliable results, it offers significant utility in real-world applications, contributing to improved structural health monitoring and rapid damage assessment after disasters, particularly in post-earthquake scenarios.
更多
查看译文
关键词
Crack detection,point cloud,deep learning,three-dimensional detection,structural health monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn