Uncovering critical transitions and molecule mechanisms in disease progressions using Gaussian graphical optimal transport
biorxiv(2024)
摘要
Understanding disease progression is crucial for detecting critical transitions and finding trigger molecules, facilitating early diagnosis interventions. However, the high dimensionality of data and the lack of aligned samples across disease stages have posed challenges in addressing these tasks. We present a novel framework, Gaussian Graphical Optimal Transport (GGOT), for analyzing disease progressions. The proposed GGOT uses Gaussian graphical models, incorporating protein interaction networks, to characterize the data distributions at different disease stages. Then we use population-level optimal transport to calculate the Wasserstein distances and transport maps between stages, enabling us to detect critical transitions. By analyzing the per-molecule transport distance, we quantify the importance of each molecule and identify trigger molecules. Moreover, GGOT predicts the occurrence of critical transitions in unseen samples and visualizes the disease progression process. We apply GGOT to the simulation dataset and six disease datasets with varying disease progression rates, to show its effectiveness for detecting critical transitions and identifying trigger molecules.
### Competing Interest Statement
The authors have declared no competing interest.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn