Detection and Identification of Tassel States at Different Maize Tasseling Stages Using UAV Imagery and Deep Learning

PLANT PHENOMICS(2024)

引用 0|浏览21
摘要
The tassel state in maize hybridization fields not only reflects the growth stage of the maize but also reflects the performance of the detasseling operation. Existing tassel detection models are primarily used to identify mature tassels with obvious features, making it difficult to accurately identify small tassels or detasseled plants. This study presents a novel approach that utilizes unmanned aerial vehicles (UAVs) and deep learning techniques to accurately identify and assess tassel states, before and after manually detasseling in maize hybridization fields. The proposed method suggests that a specific tassel annotation and data augmentation strategy is valuable for substantial enhancing the quality of the tassel training data. This study also evaluates mainstream object detection models and proposes a series of highly accurate tassel detection models based on tassel categories with strong data adaptability. In addition, a strategy for blocking large UAV images, as well as improving tassel detection accuracy, is proposed to balance UAV image acquisition and computational cost. The experimental results demonstrate that the proposed method can accurately identify and classify tassels at various stages of detasseling. The tassel detection model optimized with the enhanced data achieves an average precision of 94.5% across all categories. An optimal model combination that uses blocking strategies for different development stages can improve the tassel detection accuracy to 98%. This could be useful in addressing the issue of missed tassel detections in maize hybridization fields. The data annotation strategy and image blocking strategy may also have broad applications in object detection and recognition in other agricultural scenarios.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn