A Review of Reasoning Characteristics of RDF-based Semantic Web Systems

WIREs Data Mining Knowl Discov(2024)

引用 0|浏览4
摘要
Presented as a research challenge in 2001, the Semantic Web (SW) is now a mature technology, used in several cross-domain applications. One of its key benefits is a formal semantics of its RDF data format, which enables a system to validate data, infer implicit knowledge by automated reasoning, and explain it to a user; yet the analysis presented here of 71 RDF-based SW systems (out of which 17 reasoners) reveals that the exploitation of such semantics varies a lot among all SW applications. Since the simple enumeration of systems, each one with its characteristics, might result in a clueless listing, we borrow from Software Engineering the idea of maturity model, and organize our classification around it. Our model has three orthogonal dimensions: treatment of blank nodes, degree of deductive capabilities, and explanation of results. For each dimension, we define 3-4 levels of increasing exploitation of semantics, corresponding to an increasingly sophisticated output in that dimension. Each system is then classified in each dimension, based on its documentation and published articles. The distribution of systems along each dimension is depicted in the graphical abstract. We deliberately exclude resources consumption (time and space) since it is a dimension not peculiar to SW. This article is categorized under: Fundamental Concepts of Data and Knowledge > Knowledge Representation Fundamental Concepts of Data and Knowledge > Explainable AI
更多
查看译文
关键词
inference,maturity model,RDF,RDFS,Semantic Web
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn