C-176 Reduces Inflammation-Induced Pain by Blocking the Cgas-Sting Pathway in Microglia.
INTERNATIONAL JOURNAL OF NEUROSCIENCE(2024)
摘要
OBJECTIVE:Inflammatory pain, is caused by lesions or diseases of the somatosensory tissue, is a prevalent chronic condition that profoundly impacts the quality of life. However, clinical treatment for this type of pain remains limited. Traditionally, the stimulation of microglia and subsequent inflammatory reactions are considered crucial elements to promote the worsening of inflammatory pain. Recent research has shown the crucial importance of the cGAS-STING pathway in promoting inflammation. It is still uncertain if the cGAS-STING pathway plays the role in the fundamental cause of inflammatory pain. We aim to explore the treatment of inflammatory pain by interfering with cGAS-STING signaling pathway.METHODS:In this study, we established an inflammatory pain model by CFA into the plantar of mice. Activation of microglia, various inflammatory factors and cGAS-STING protein in the spinal dorsal horn were evaluated. Immunofluorescence staining was used to observe the cellular localization of cGAS and STING. The cGAS-STING pathway proteins expression and mRNA expression of indicated microglial M1/M2 phenotypic markers in the BV2 microglia were detected. STING inhibitor C-176 was intrathecal injected into mice with inflammatory pain, and the pain behavior and microglia were observed.RESULTS:This research showed that injecting CFA into the left hind paw of mice caused mechanical allodynia and increased inflammation in the spine. Our research results suggested that the cGAS-STING pathway had a function in the inflammation mediated by microglia in the spinal cord dorsal horn. Blocking the cGAS-STING pathway using STING antagonists (C-176) led to reduced release of inflammatory factors and prevented M1 polarization of BV2 microglia in a laboratory setting. Additionally, intrathecal administration of C-176 reduced the allodynia in CFA treated mice.CONCLUSION:Our results suggest that inhibiting microglial polarization through the cGAS-STING pathway represents a potential novel therapeutic strategy for inflammatory pain.
更多查看译文
关键词
cGAS-STING,inflammatory pain,C-176,polarization,spinal cord
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn