Pattern Recognition of Partial Discharge Faults in Switchgear Using a Back Propagation Neural Network Optimized by an Improved Mantis Search Algorithm
SENSORS(2024)
摘要
The dependable functioning of switchgear is essential to maintain the stability of power supply systems. Partial discharge (PD) is a critical phenomenon affecting the insulation of switchgear, potentially leading to equipment failure and accidents. PDs are generally grouped into metal particle discharge, suspended discharge, and creeping discharge. Different types of PDs are closely related to the severity of a PD. Partial discharge pattern recognition (PDPR) plays a vital role in the early detection of insulation defects. In this regard, a Back Propagation Neural Network (BPNN) for PDPR in switchgear is proposed in this paper. To eliminate the sensitivity to initial values of BPNN parameters and to enhance the generalized ability of the proposed BPRN, an improved Mantis Search Algorithm (MSA) is proposed to optimize the BPNN. The improved MSA employs some boundary handling strategies and adaptive parameters to enhance the algorithm’s efficiency in optimizing the network parameters of BPNN. Principal Component Analysis (PCA) is introduced to reduce the dimensionality of the feature space to achieve significant time saving in comparable recognition accuracy. The initially extracted 14 feature values are reduced to 7, reducing the BPNN parameter count from 183 with 14 features to 113 with 7 features. Finally, numerical results are presented and compared with Decision Tree (DT), k-Nearest Neighbor classifiers (KNN), and Support Vector Machine (SVM). The proposed method in this paper exhibits the highest recognition accuracy in metal particle discharge and suspended discharge.
更多查看译文
关键词
back propagation neural network,mantis search algorithm,partial discharge pattern recognition,principal component analysis,switchgear
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn