Genome-Wide Detection of Copy Number Variations and Their Potential Association with Carcass and Meat Quality Traits in Pingliang Red Cattle

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2024)

引用 0|浏览43
摘要
Copy number variation (CNV) serves as a significant source of genetic diversity in mammals and exerts substantial effects on various complex traits. Pingliang red cattle, an outstanding indigenous resource in China, possess remarkable breeding value attributed to their tender meat and superior marbling quality. However, the genetic mechanisms influencing carcass and meat quality traits in Pingliang red cattle are not well understood. We generated a comprehensive genome-wide CNV map for Pingliang red cattle using the GGP Bovine 100K SNP chip. A total of 755 copy number variable regions (CNVRs) spanning 81.03 Mb were identified, accounting for approximately 3.24% of the bovine autosomal genome. Among these, we discovered 270 potentially breed-specific CNVRs in Pingliang red cattle, including 143 gains, 73 losses, and 54 mixed events. Functional annotation analysis revealed significant associations between these specific CNVRs and important traits such as carcass and meat quality, reproduction, exterior traits, growth traits, and health traits. Additionally, our network and transcriptome analysis highlighted CACNA2D1, CYLD, UBXN2B, TG, NADK, and ITGA9 as promising candidate genes associated with carcass weight and intramuscular fat deposition. The current study presents a genome-wide CNV map in Pingliang red cattle, highlighting breed-specific CNVRs, and transcriptome findings provide valuable insights into the underlying genetic characteristics of Pingliang red cattle. These results offer potential avenues for enhancing meat quality through a targeted breeding program.
更多
查看译文
关键词
copy number variation,carcass and meat quality traits,Pingliang red cattle,candidate genes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn