Enhanced and Balanced Carrier Mobility Via N‐type SnS Dopant Enables High‐Performance Non‐Fullerene Organic Solar Cells

ADVANCED FUNCTIONAL MATERIALS(2024)

引用 0|浏览17
摘要
The unbalanced electron‐hole mobility is the major bottleneck for boosting the photovoltaic performance of organic solar cells. In this study, 2D n‐type inorganic semiconductor material tin sulfide (SnS) is prepared and introduced into the PM6:Y6 bulk heterojunction organic solar cells to improve photovoltaic performance. The incorporation of SnS promotes Y6 crystallization, and renders the face‐on orientation of Y6 molecules dominant. The improved active layer morphology suppresses carrier recombination and strengthens the electron transport. The electron mobility increases significantly from 4.71 × 10−4 cm2 V−1 s−1 to 7.61 × 10−4 cm2 V−1 s−1 with the hole/electron mobilities (µh/µe) value reducing from 1.67 to 1.11. With enhanced and balanced carrier mobility, the open‐circuit voltage, short‐circuit current density and fill factor of the SnS‐doped PM6:Y6 organic solar cells are improved simultaneously, and the power conversion efficiency is boosted from 16.66 to 18.50%. Additionally, the SnS doped devices exhibit better thermal and storage stability. The improved photovoltaic performance is further verified in PM6:L8‐BO and D18:Y6 based organic solar cells. This work demonstrates that n‐type SnS dopant is an efficient and universal method to improve photovoltaic performance of non‐fullerene organic solar cells.
更多
查看译文
关键词
active layer,mobility,morphology,power conversion efficiency,SnS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn