Vapor Deposition of Bilayer 3R MoS2 with Room-Temperature Ferroelectricity
ADVANCED MATERIALS(2024)
摘要
Two-dimensional ultrathin ferroelectrics have attracted much interest due to their potential application in high-density integration of non-volatile memory devices. Recently, 2D van der Waals ferroelectric based on interlayer translation has been reported in twisted bilayer h-BN and transition metal dichalcogenides (TMDs). However, sliding ferroelectricity is not well studied in non-twisted homo-bilayer TMD grown directly by chemical vapor deposition (CVD). In this paper, for the first time, experimental observation of a room-temperature out-of-plane ferroelectric switch in semiconducting bilayer 3R MoS2 synthesized by reverse-flow CVD is reported. Piezoelectric force microscopy (PFM) hysteretic loops and first principle calculations demonstrate that the ferroelectric nature and polarization switching processes are based on interlayer sliding. The vertical Au/3R MoS2/Pt device exhibits a switchable diode effect. Polarization modulated Schottky barrier height and polarization coupling of interfacial deep states trapping/detrapping may serve in coordination to determine switchable diode effect. The room-temperature ferroelectricity of CVD-grown MoS2 will proceed with the potential wafer-scale integration of 2D TMDs in the logic circuit.
更多查看译文
关键词
bilayer 3R MoS2,chemical vapor deposition,piezoelectric force microscopy,scanning Kelvin Probe microscopy,sliding ferroelectricity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn