Prediction of the Short-Term Efficacy and Recurrence of Photodynamic Therapy in the Treatment of Oral Leukoplakia Based on Deep Learning

PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY(2024)

引用 0|浏览5
摘要
BACKGROUND:The treatment of oral leukoplakia (OLK) with aminolaevulinic acid photodynamic therapy (ALA-PDT) is widespread. Nonetheless, there is variation in efficacy. Therefore, this study constructed a model for predicting the short-term efficacy and recurrence of OLK after ALA-PDT. METHODS:The short-term efficacy and recurrence of ALA-PDT were calculated by statistical analysis, and the relevant influencing factors were analyzed by Logistic regression and COX regression model. Finally, prediction models for total response (TR) rate, complete response (CR) rate and recurrence in OLK patients after ALA-PDT treatment were established. Features from pathology sections were extracted using deep learning autoencoder and combined with clinical variables to improve prediction performance of the model. RESULTS:The logistic regression analysis showed that the non-homogeneous (OR: 4.911, P: 0.023) OLK and lesions with moderate to severe epithelial dysplasia (OR: 4.288, P: 0.042) had better short-term efficacy. The area under receiver operating characteristic curve (AUC) of CR, TR and recurrence predict models after the ALA-PDT treatment of OLK patients is 0.872, 0.718, and 0.564, respectively. Feature extraction revealed an association between inflammatory cell infiltration in the lamina propria and recurrence after PDT. Combining clinical variables and deep learning improved the performance of recurrence model by more than 30 %. CONCLUSIONS:ALA-PDT has excellent short-term efficacy in the management of OLK but the recurrence rate was high. Prediction model based on clinicopathological characteristics has excellent predictive effect for short-term efficacy but limited effect for recurrence. The use of deep learning and pathology images greatly improves predictive value of the models.
更多
查看译文
关键词
Photodynamic therapy,Oral leukoplakia,Short-term efficacy,Recurrence,Prediction model,Deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn