Ultra-Low Dielectric Loss and High Thermal Conductivity of PTFE Composites Improved by Schistose and Globular Alumina
CERAMICS INTERNATIONAL(2024)
摘要
Polytetrafluoroethylene (PTFE) based microwave dielectric composite has been widely used because of its adjustable dielectric constant and low dielectric loss, but its low thermal conductivity can not meet the heat dissipation requirements of high-power microwave devices. Therefore, it is of great significance to develop microwave dielectric composites with high thermal conductivity and low loss. In order to obtain microwave composite materials with high thermal conductivity and low losses, schistose Al2O3/PTFE 2 O 3 /PTFE (S-A/PTFE) composites and globular Al2O3/PTFE 2 O 3 /PTFE (G-A/PTFE) composites were successfully prepared. It is compared whether S-A can combine with PTFE more fully than G-A, which can promote the dielectric properties and thermal conductivity of Al2O3/PTFE 2 O 3 /PTFE composites. Surprisingly, the S-A/PTFE composites demonstrate higher thermal conductivity, lower thermal expansion and hygroscopic properties. The S-A/PTFE composites can deliver a high thermal conductivity of 0.986 W/m K. Composite substrates with 53 wt% S-A filler exhibits excellent performance, which specifically show credible dielectric constant (epsilon r r = 4.01) and admissible dielectric loss (tans = 0.0014 at 10 GHz). Furthermore, the composite substrate shows a similar thermal expansion coefficient to copper, and lower water absorption rate (0.05 %). The relationship between dielectric constant of composite and filler was predicted by different theoretical modeling methods.
更多查看译文
关键词
Polymer composites,PTFE,Thermal performance,Dielectric properties,Al 2 O 3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn