Physics-informed Identification of PDEs with LASSO Regression, Examples of Groundwater-Related Equations

JOURNAL OF HYDROLOGY(2024)

引用 0|浏览1
摘要
In recent years, the application of machine learning methods in the derivation of physical governing equations has gained significant attention. This has become increasingly relevant due to the growing complexity of problems that are difficult to fully comprehend. Instead of driving solely by data, this study incorporated the conservation of mass into its framework. To ensure the physical rationality of the derived equations, dimensional analysis was incorporated into the algorithm. This facilitated establishing connections between physical parameters and each term of the target equation, ensuring the validity and reliability of the resulting equation. To enhance the interpretability of the resulting partial differential equations (PDEs), we analyzed and compared the results obtained from sparse regression, multi-objective optimization, and then proposed a sequential identification method, namely PHY-PDE. To validate this approach, the identified PDEs were rigorously tested against groundwater-related equations, specifically the Darcy’s equation and the advection–diffusion equation. Additionally, various scenarios involving parametric models, unknown or missing information, and different levels of noisy data were considered. The complexity of the resulting PDE was found to be directly proportional to the inputted information. Furthermore, a polynomial regression method was employed to address the noisy interruption, yielding satisfactory results for noise levels of up to approximately 45%. This innovative approach significantly contributes to PDEs identification under varying conditions, ensuring a more physically grounded outcome.
更多
查看译文
关键词
Partial differential equations,Sparse regression,Dimensional analysis,Groundwater
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn