Towards Infinite-Long Prefix in Transformer

CoRR(2024)

引用 0|浏览28
摘要
Prompting and context-based fine-tuning methods, which we call Prefix Learning, have been proposed to enhance the performance of language models on various downstream tasks. They are empirically efficient and effective, matching the performance of full parameter fine-tuning, but the theoretical understandings are limited. In this paper, we aim to address this limitation by studying their ability from the perspective of prefix length. In particular, we provide a convergence guarantee for training an ultra-long prefix in a stylized setting using the Neural Tangent Kernel (NTK) framework. Based on this strong theoretical guarantee, we design and implement an algorithm that only needs to introduce and fine-tune a few extra trainable parameters instead of an infinite-long prefix in each layer of a transformer, and can approximate the prefix attention to a guaranteed polynomial-small error. Preliminary experimental results on vision, natural language, and math data show that our method achieves superior or competitive performance compared to existing methods like full parameters fine-tuning, P-Tuning V2, and LoRA. This demonstrates our method is promising for parameter-efficient fine-tuning. Our code can be found at .
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn